Stathern Primary School

'Nurture, Inspire, Discover, Create'

Calculation Policy

2021-2023

Reviewed by teaching staff and ratified at the School Development Committee on:

Signed: $9 \tan A t$

Introduction

The following policy represents the agreed written calculation policy for Stathern Primary School. It reflects the progression of calculating skills for Key Stage 1 and Key Stage 2. It is based on the NCETM policy for Written Calculation.

The Calculation Policy should be read in conjunction with the Mathematics Teaching and Learning Policy, Marking Policy and Feedback Policy for Stathern Primary School.

Our Calculation Policy supports our whole school ethos and values and embraces our 4 motto words.

Addition

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc.)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4 ? What is the sum of 4 and 4 ? What's the total of 4 and 2 ? $4+2$
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g. $6+\square=11$ and $6+5=5+\square \quad 6+5=\square+4$

TO + O using base 10. Continue to develop understanding of partitioning and place value

$41+8$

Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones.

This could be done one of two ways:

$41+8$

Looking for ways to m
$36+25=30+20=50$
$5+5=10$
$50+10+1=61$
15

Formal method:
36
$+25$ 61

1

Use of place value counters to add HTO + TO, HTO + HTO etc. once the children have had practice with this, they should be able to apply it to larger numbers and the abstract

Chidren to represent the counters e.g. like the image below

If the children are completing a word problem, draw a bar model to represent what it's asking them to do

?	
243	368

Fluency variation, different ways to ask children to solve 21+34:

Subtraction

Key language which should be used：take away，less than，the difference，subtract，minus，fewer，decrease，＇ 7 take away 3 ，the difference is four＇

| Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- |
| Physically taking away and removing
 objects from a whole（use various objects
 too）rather than crossing out－children will
 physically remove the objects
 $4-3=1$ | Children to draw the concrete resources they are using
 and cross out． | $\mathbf{4 - 3 =}$ |

Counting back（using number lines or number tracks）

थッリツ ••
m

Children to represent what they see pictorially e．g． 6

2

Finding the difference (using cubes, numicon or Cuisenaire rods, other objects can also be used)

Children to draw the cubes/other concrete objects which \quad Find the difference between 8 and 6. they have used

XXXXXXXX

 XXXXXXUse of the bar model

$$
8-6, \text { the difference is? }
$$

Children to also explore why
9-7 = 8-6 (the difference, of each digit, has changed by 1 do the difference is the samethis will help
when solving 10000-9987)

1) Start by partitioning 45
2) Exchange one ten for ten more ones
3) Subtract the ones, then the tens.

Represent the base 10 pictorially

Tens	Ones
	0
1	9

Once the children have had practice with the concrete, they should be able to apply it to any subtraction.

Like the other pictorial representations, children to represent the counters.

$23^{2} 4$
-88 6
\square

Column method (using place value counters) 234-88

Fluency variation, different ways to ask children to solve 391-186:

Multiplication

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $X X \quad X X \quad X X$ $X X \quad X X X X$ Use of a bar model for a more structured method	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- $3 x$ 4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

Fluency variation, different ways to ask children to solve 6×23 :

23	23	23	23	23	23

?

With the counters, prove that $6 \times 23=$ 138

Why is $6 \times 23=32 \times 6$?

Mai had to swim 23 lengths, 6 Find the product of 6 and times a week. How many lengths did she swim in one week?

Tom saved 23 p three days a week. How much did he save in 63 2 weeks?
$\begin{array}{r}\times \quad 23 \\ \hline\end{array}$
\qquad -

What's the calculation? What's the answer?

Division

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	This can also be done in a bar so all 4 operation have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line
2d $\div 1 d$ with remainders $13 \div 4$ - 3 remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	$13 \div 4$ - 3 remainder 1 Children to count their times tables facts in their heads

Long Division

Concrete	Pictorial	Abstract
$2544 \div 12$ How many groups of 12 thousands do we have? None Exchange 2 thousand for 20 hundreds. $\begin{array}{r} 1 2 \longdiv { 0 2 } \\ \frac{24}{2544} \\ \frac{24}{1} \end{array}$ How many groups of 12 are in 25 hundreds? 2 groups. Circle them. We have grouped 24 hundreds so can take them off and we are left with one. Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14 ? 1 remainder 2. Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2	Children to represent the counters, pictorially and record the subtractions beneath.	Step one- exchange 2 thousand for 20 hundreds so we now have 25 hundreds. Step two- How many groups of Exchange the one hundred for 10 tens. How many groups of 12 can I make with 14 tens? The 14 shows how many tens I have, the 12 is how many I Exchange the 2 tens for 20 ones. The 24 is how many ones I have grouped and the 0 is what I have left.

This policy should be reviewed annually by the SDC and presented for approval to the Full Governing Body.

Log of changes and updates to the document:

Date	Page	Change	Approver		
$5 / 11 / 2020$	All	Policy created by Maths Leader - EM and reviewed with HT	KL		
$11 / 11 / 2020$	All	Reviewed at staff meeting	Reviewed by		
governors					
None				\quad SDC	All
:---					
$10 / 12 / 2021$					

